Triple Crossing Number of Knots and Links

نویسنده

  • COLIN ADAMS
چکیده

A triple crossing is a crossing in a projection of a knot or link that has three strands of the knot passing straight through it. A triple crossing projection is a projection such that all of the crossings are triple crossings. We prove that every knot and link has a triple crossing projection and then investigate c3(K), which is the minimum number of triple crossings in a projection of K. We obtain upper and lower bounds on c3(K) in terms of the traditional crossing number and show that both are realized. We also relate triple crossing number to the span of the bracket polynomial and use this to determine c3(K) for a variety of knots and links. We then use c3(K) to obtain bounds on the volume of a hyperbolic knot or link. We also consider extensions to cn(K).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Coherent band pathways between knots and links

We categorise coherent band (aka nullification) pathways between knots and 2component links. Additionally, we characterise the minimal coherent band pathways (with intermediates) between any two knots or 2-component links with small crossing number. We demonstrate these band surgeries for knots and links with small crossing number. We apply these results to place lower bounds on the minimum num...

متن کامل

A Topological Characterization of Knots and Links Arising from Site-specific Recombination

We develop a topological model of knots and links arising from a single (or multiple processive) round(s) of recombination starting with an unknot, unlink, or (2, m)torus knot or link substrate. We show that all knotted or linked products fall into a single family, and prove that the size of this family grows linearly with the cube of the minimum number of crossings. Additionally, we prove that...

متن کامل

ar X iv : m at h / 06 06 25 5 v 1 [ m at h . G T ] 1 1 Ju n 20 06 COEFFICIENTS AND NON - TRIVIALITY OF THE JONES POLYNOMIAL

We show that several classes of links, including semiadequate links and Whitehead doubles of semiadequate knots, have non-trivial Jones polynomial. Then we prove that there are infinitely many positive knots with no positive minimal crossing diagrams, and infinitely many achiral knots of odd crossing number. Some applications to the twist number of a link, Mahler measure and the hyperbolic volu...

متن کامل

Characterization of Knots and Links Arising From Site-specific Recombination on Twist Knots

We develop a model characterizing all possible knots and links arising from recombinationstarting with a twist knot substrate, extending previous work of Buck and Flapan. We show that allknot or link products fall into three well-understood families of knots and links, and prove that given apositive integer n, the number of product knots and links with minimal crossing number equal ...

متن کامل

On two categorifications of the arrow polynomial for virtual knots

Two categorifications are given for the arrow polynomial, an extension of the Kauffman bracket polynomial for virtual knots. The arrow polynomial extends the bracket polynomial to infinitely many variables, each variable corresponding to an integer arrow number calculated from each loop in an oriented state summation for the bracket. The categorifications are based on new gradings associated wi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012